Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 12(1): 17937, 2022 10 26.
Artigo em Inglês | MEDLINE | ID: mdl-36289293

RESUMO

Mitigating the effects of global change on biodiversity requires its understanding in the past. The main proxy of plant diversity, fossil pollen record, has a complex relationship to surrounding vegetation and unknown spatial scale. We explored both using modern pollen spectra in species-rich and species-poor regions in temperate Central Europe. We also considered the biasing effects of the trees by using sites in forests and open habitats in each region. Pollen samples were collected from moss polsters at 60 sites and plant species were recorded along two 1 km-transects at each site. We found a significant positive correlation between pollen and plant richness (alpha diversity) in both complete datasets and for both subsets from open habitats. Pollen richness in forest datasets is not significantly related to floristic data due to canopy interception of pollen rather than to pollen productivity. Variances (beta diversity) of the six pollen and floristic datasets are strongly correlated. The source area of pollen richness is determined by the number of species appearing with increasing distance, which aggregates information on diversity of individual patches within the landscape mosaic and on their compositional similarity. Our results validate pollen as a reconstruction tool for plant diversity in the past.


Assuntos
Biodiversidade , Florestas , Plantas , Árvores , Ecossistema , Pólen
2.
Quat Sci Rev ; 116: 15-27, 2015 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-28522887

RESUMO

The post-glacial fate of central European grasslands has stimulated palaeoecological debates for a century. Some argued for the continuous survival of open land, while others claimed that closed forest had developed during the Middle Holocene. The reasons behind stability or changes in the proportion of open land are also unclear. We aim to reconstruct regional vegetation openness and test the effects of climate and human impact on vegetation change throughout the Holocene. We present a newly dated pollen record from north-western fringes of the Pannonian Plain, east-central Europe, and reconstruct Holocene regional vegetation development by the REVEALS model for 27 pollen-equivalent taxa. Estimated vegetation is correlated in the same area with a human activity model based on all available archaeological information and a macrophysical climate model. The palaeovegetation record indicates the continuous presence of open land throughout the Holocene. Grasslands and open woodlands were probably maintained by local arid climatic conditions during the early Holocene delaying the spread of deciduous (oak) forests. Significantly detectable human-made landscape transformation started only after 2000 BC. Our analyses suggest that Neolithic people spread into a landscape that was already open. Humans probably contributed to the spread of oak, and influenced the dynamics of hazel and hornbeam.

3.
PLoS One ; 9(6): e100117, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24936973

RESUMO

The REVEALS model is a tool for recalculating pollen data into vegetation abundances on a regional scale. We explored the general effect of selected parameters by performing simulations and ascertained the best model setting for the Czech Republic using the shallowest samples from 120 fossil sites and data on actual regional vegetation (60 km radius). Vegetation proportions of 17 taxa were obtained by combining the CORINE Land Cover map with forest inventories, agricultural statistics and habitat mapping data. Our simulation shows that changing the site radius for all taxa substantially affects REVEALS estimates of taxa with heavy or light pollen grains. Decreasing the site radius has a similar effect as increasing the wind speed parameter. However, adjusting the site radius to 1 m for local taxa only (even taxa with light pollen) yields lower, more correct estimates despite their high pollen signal. Increasing the background radius does not affect the estimates significantly. Our comparison of estimates with actual vegetation in seven regions shows that the most accurate relative pollen productivity estimates (PPEs) come from Central Europe and Southern Sweden. The initial simulation and pollen data yielded unrealistic estimates for Abies under the default setting of the wind speed parameter (3 m/s). We therefore propose the setting of 4 m/s, which corresponds to the spring average in most regions of the Czech Republic studied. Ad hoc adjustment of PPEs with this setting improves the match 3-4-fold. We consider these values (apart from four exceptions) to be appropriate, because they are within the ranges of standard errors, so they are related to original PPEs. Setting a 1 m radius for local taxa (Alnus, Salix, Poaceae) significantly improves the match between estimates and actual vegetation. However, further adjustments to PPEs exceed the ranges of original values, so their relevance is uncertain.


Assuntos
Fósseis , Modelos Teóricos , Plantas , Pólen , República Tcheca , Ecossistema , Vento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...